How to enhance network monitoring: 3 anomaly detection use cases
In the LM Envision platform, anomaly detection for metrics is referred to by the feature name “Dynamic Threshold” rather than the more generic machine learning term “anomaly detection.” Dynamic thresholds allow users to identify and set custom alert thresholds based on observed data points. Metric thresholds in rules-based systems are effective when the desired outcome is clear. However, static thresholds may not anticipate emerging issues.