|
By Danny Driscoll
Amazon Elastic Container Service (ECS) is a container orchestration service that enables you to efficiently deploy new applications or modernize existing ones by migrating them to a containerized environment. Building on ECS gives you the flexibility, scalability, and security that containers offer, but also presents challenges in monitoring and troubleshooting your applications and infrastructure.
|
By Jordan Obey
In 2021, we announced the release of the Datadog Lambda extension, a simplified, cost-effective way for customers to collect monitoring data from their AWS Lambda functions. This extension was a specialized build of our main Datadog Agent designed to monitor Lambda executions.
|
By Matthieu Jaillais
Over the past few years, Arm has surged to the forefront of computing. For decades, Arm processors were mainly associated with a handful of specific use cases, such as smartphones, IoT devices, and the Raspberry Pi. But the introduction of AWS Graviton2 in 2019 and the adoption of Arm-based hardware platforms by Apple and others helped bring about a dramatic shift, and Arm is now the most widely used processor architecture in the world.
|
By Evan Pandya
Datadog APM and distributed tracing provide teams with an end-to-end view of requests across services, uncovering dependencies and performance bottlenecks to enable real-time troubleshooting and optimization. However, traditional manual instrumentation, while customizable, is often time consuming, error prone, and resource intensive, requiring developers to configure each service individually and closely collaborate with SRE teams.
|
By Thomas Sobolik
Managing LLM provider costs has become a chief concern for organizations building and deploying custom applications that consume services like OpenAI. These applications often rely on multiple backend LLM calls to handle a single initial prompt, leading to rapid token consumption—and consequently, rising costs. But shortening prompts or chunking documents to reduce token consumption can be difficult and introduce performance trade-offs, including an increased risk of hallucinations.
|
By Amber Tunnell
Datadog is a central hub of information—enabling you to see logs, traces, and metrics from across your stack and providing a centralized source of notifications about potential issues. However, when Datadog notifies you of an issue, you often need to log in to other applications to fully assess and resolve it, which slows down mitigation.
|
By Micah Kim
Today, CISOs and security teams face a rapidly growing volume of logs from a variety of sources, all arriving in different formats. They write and maintain detection rules, build pipelines, and investigate threats across multiple environments and applications. Efficiently maintaining their security posture across multiple products and data formats has become increasingly challenging.
|
By Curtis Maher
vLLM is a high-performance serving framework for large language models (LLMs). It optimizes token generation and resource management to deliver low-latency, scalable performance for AI-driven applications such as chatbots, virtual assistants, and recommendation systems. By efficiently managing concurrent requests and overlapping tasks, vLLM enables organizations to deploy LLMs in demanding environments with speed and efficiency.
|
By Sumedha Mehta
Serverless or event-driven applications can comprise many different distributed components, including serverless compute services such as AWS Lambda and AWS Fargate for Amazon ECS, as well as managed data streams, data stores, workflow orchestration tools, queues, and more. Having full end-to-end visibility into requests as they propagate across all of these parts of your application is crucial to monitoring performance, locating affected up- or downstream services, and troubleshooting issues.
|
By Thomas Sobolik
Progressive web applications (PWAs) are a modern frontend architecture designed to provide a similar user experience to that of a native iOS, Android, or other platform-specific app. PWAs are built using common web platform technologies—such as, HTML, CSS, and JavaScript—and are intended not only to run in a browser and be accessed from the web, but also to be installed on users’ devices and accessed offline.
|
By Datadog
Cloud spending continues to grow, but managing costs effectively remains a challenge for many organizations. In this video, Datadog Senior Product Manager Kayla Taylor dives into our recent State of Cloud Costs report—which analyzed AWS cloud cost data from hundreds of organizations—to understand the key factors driving cloud expenses. We explore the impact of adopting emerging compute technologies like Arm-based processors, GPUs, and AI capabilities, how usage patterns and previous-generation technologies affect cloud costs, and the role of AWS discount programs in cost management.
|
By Datadog
In this video we’ll continue looking at how Kubernetes handles authentication with a look at bootstrap and static token authentication.
|
By Datadog
Datadog operates dozens of Kubernetes clusters, tens of thousands of hosts, and millions of containers across a multi-cloud environment, spanning AWS, Azure, and Google Cloud. With over 2,000 engineers, we needed to ensure that every developer and application could securely and efficiently access resources across these various cloud providers.
|
By Datadog
This video aims to showcase how developers can self-serve from an application to simplify the management of their AWS cloud resources. Rather than switching between tools or reaching out to another team for help, developers can take action directly from their observability tool, enabling faster resolution of application issues. We will demonstrate how to build a simple app that allows them to minimize disruptions by quickly taking action on their SQS queues in AWS, using insights provided by Datadog.
|
By Datadog
Temporal is an open source platform to build resilient and reliable distributed systems. Datadog started using Temporal in 2020 as the foundation for our internal software delivery platform. Since then, its usage has been widely adopted as a platform that any engineering team can use to build their systems. In this Datadog on episode, Ara Pulido chats with Loïc Minaudier, Senior Software Engineer in the Atlas team, responsible for providing a developer platform on top of Temporal, and Allen George, Engineering Manager in the Datadog Workflows team.
|
By Datadog
On This Month in Datadog, we’re spotlighting LLM Observability’s native integration with Google Gemini, which automatically captures the LLM requests your application makes to Gemini models.
|
By Datadog
Datadog Service Catalog automatically consolidates real-time observability data and internal engineering knowledge about all of your services into a unified view.
|
By Datadog
Learn how Appfolio is delivering positive customer experiences in real estate with generative AI — supported and safeguarded by Datadog’s LLM Observability. See how you can use Datadog LLM Observability to monitor, troubleshoot, improve, and secure your LLM applications.
|
By Datadog
Datadog is constantly elevating the approach to cloud monitoring and security. This Month in Datadog updates you on our newest product features, announcements, resources, and events. To learn more about Datadog and start a free 14-day trial, visit Cloud Monitoring as a Service | Datadog. This month, we put the Spotlight on Datadog LLM Observability’s native integration with Google Gemini.
|
By Datadog
With over 426 million active users, comprised of consumers and merchants, Paypal processes approximately 25 billion transactions valued at around $1.53 trillion USD. Paypal is shaping the future of commerce for millions of customers globally, and to do that, they use Datadog to provide timely insights into their entire stack.
|
By Datadog
As Docker adoption continues to rise, many organizations have turned to orchestration platforms like ECS and Kubernetes to manage large numbers of ephemeral containers. Thousands of companies use Datadog to monitor millions of containers, which enables us to identify trends in real-world orchestration usage. We're excited to share 8 key findings of our research.
|
By Datadog
The elasticity and nearly infinite scalability of the cloud have transformed IT infrastructure. Modern infrastructure is now made up of constantly changing, often short-lived VMs or containers. This has elevated the need for new methods and new tools for monitoring. In this eBook, we outline an effective framework for monitoring modern infrastructure and applications, however large or dynamic they may be.
|
By Datadog
Where does Docker adoption currently stand and how has it changed? With thousands of companies using Datadog to track their infrastructure, we can see software trends emerging in real time. We're excited to share what we can see about true Docker adoption.
|
By Datadog
Build an effective framework for monitoring AWS infrastructure and applications, however large or dynamic they may be. The elasticity and nearly infinite scalability of the AWS cloud have transformed IT infrastructure. Modern infrastructure is now made up of constantly changing, often short-lived components. This has elevated the need for new methods and new tools for monitoring.
|
By Datadog
Like a car, Elasticsearch was designed to allow you to get up and running quickly, without having to understand all of its inner workings. However, it's only a matter of time before you run into engine trouble here or there. This guide explains how to address five common Elasticsearch challenges.
|
By Datadog
Monitoring Kubernetes requires you to rethink your monitoring strategies, especially if you are used to monitoring traditional hosts such as VMs or physical machines. This guide prepares you to effectively approach Kubernetes monitoring in light of its significant operational differences.
- December 2024 (6)
- November 2024 (27)
- October 2024 (15)
- September 2024 (15)
- August 2024 (10)
- July 2024 (15)
- June 2024 (25)
- May 2024 (12)
- April 2024 (19)
- March 2024 (11)
- February 2024 (21)
- January 2024 (19)
- December 2023 (18)
- November 2023 (22)
- October 2023 (15)
- September 2023 (14)
- August 2023 (28)
- July 2023 (15)
- June 2023 (17)
- May 2023 (22)
- April 2023 (13)
- March 2023 (22)
- February 2023 (12)
- January 2023 (8)
- December 2022 (9)
- November 2022 (27)
- October 2022 (22)
- September 2022 (14)
- August 2022 (21)
- July 2022 (13)
- June 2022 (13)
- May 2022 (18)
- April 2022 (14)
- March 2022 (6)
- February 2022 (14)
- January 2022 (17)
- December 2021 (9)
- November 2021 (16)
- October 2021 (26)
- September 2021 (8)
- August 2021 (18)
- July 2021 (15)
- June 2021 (16)
- May 2021 (23)
- April 2021 (20)
- March 2021 (16)
- February 2021 (9)
- January 2021 (10)
- December 2020 (22)
- November 2020 (17)
- October 2020 (12)
- September 2020 (15)
- August 2020 (22)
- July 2020 (20)
- June 2020 (14)
- May 2020 (18)
- April 2020 (24)
- March 2020 (13)
- February 2020 (13)
- January 2020 (11)
- December 2019 (16)
- November 2019 (11)
- October 2019 (11)
- September 2019 (11)
- August 2019 (16)
- July 2019 (18)
- June 2019 (11)
- May 2019 (12)
- April 2019 (20)
- March 2019 (10)
- February 2019 (9)
- January 2019 (6)
- December 2018 (7)
- November 2018 (7)
- October 2018 (13)
- September 2018 (5)
- August 2018 (12)
- July 2018 (12)
- June 2018 (6)
- March 2018 (1)
- December 2017 (1)
- November 2017 (1)
Datadog is the essential monitoring platform for cloud applications. We bring together data from servers, containers, databases, and third-party services to make your stack entirely observable. These capabilities help DevOps teams avoid downtime, resolve performance issues, and ensure customers are getting the best user experience.
See it all in one place:
- See across systems, apps, and services: With turn-key integrations, Datadog seamlessly aggregates metrics and events across the full devops stack.
- Get full visibility into modern applications: Monitor, troubleshoot, and optimize application performance.
- Analyze and explore log data in context: Quickly search, filter, and analyze your logs for troubleshooting and open-ended exploration of your data.
- Build real-time interactive dashboards: More than summary dashboards, Datadog offers all high-resolution metrics and events for manipulation and graphing.
- Get alerted on critical issues: Datadog notifies you of performance problems, whether they affect a single host or a massive cluster.
Modern monitoring & analytics. See inside any stack, any app, at any scale, anywhere.